Bài viết giới thiệu với các bạn về các phương pháp kích dẫn các MOSFET công suất. Các mạch kích hoạt, điều khiển hay gọi là lái (drive) các MOSFET trong các ứng dụng như: công tắc đèn, điều khiển relay, điều khiển solenoid… nói chung điều khiển đơn, và những khái niệm về điều khiển mạch cầu công suất, phục vụ cho các bài viết sau về mạch cầu H và điều khiển motor.
Các mạch lái MOSFET công suất rất đa dạng có thể sử dụng các linh kiện rời như BJT, JFET, MOSFET, có thể sử dụng các IC tương tự như Op-Amp, IC 555, hay các IC số họ TTL và CMOS.
Nguyên tắc kích cực cửa
Mạch lái cho một MOSFET công suất sẽ ảnh hưởng đến hành vi chuyển mạch và khả năng tiêu tán công suất của nó.
- Để bật dẫn MOSFET, phải đặt điện áp cao hơn điện áp ngưỡng định mức Vth vào cực cửa. Điện áp VGS ˃ Vth khoảng 3 đến 5 V.
Điện áp VGS của hầu hết các MOSFET công suất không quá 20 VDC (chỉ đề cập đến MOSFET kênh n).
- Có thể mắc song song nhiều MOSFET công suất trong các ứng dụng switching. Đó là bởi vì ở đây MOSFET hoạt động trong vùng điện trở của VDS thấp (được đặc trưng bởi trở kháng RON gần là hằng, ngược lại với miền “bão hòa dòng” điện áp VDS cao hơn ở đó transistor được đặc trưng bởi ID gần như không đổi): nó là hệ số nhiệt dương của RON, nó ổn định dòng chia ra trong các MOSFET mắc song song. Không cần các điện trở dằn cần thiết.
- Vì MOSFET về bản chất được điều khiển bằng điện áp, nên chỉ cần dòng điện cực cửa là cần thiết để nạp điện dung đầu vào Ciss. Một MOSFET công suất có thể được điều khiển trực tiếp bởi CMOS hoặc mạch logic TTL cực thu hở.
- MOSFET thường được sử dụng làm linh kiện chuyển mạch ở tần số từ vài kHz đến hơn vài trăm kHz. Mức tiêu thụ công suất thấp cần thiết để lái cực cửa là một lợi thế của MOSFET như một linh kiện chuyển mạch. MOSFET được thiết kế để lái điện áp thấp cũng có sẵn.
Cực cửa của MOSFET có thể được coi là một tụ điện. Điện áp cực cửa của MOSFET không tăng trừ khi điện dung đầu vào cực cửa của nó được nạp, và MOSFET không bật dẫn cho đến khi điện áp cực cửa của nó đạt đến điện áp ngưỡng cực cửa Vth.
Khi xem xét mạch kích (lái) và dòng kích, điện tích cực cửa Qg (là thông số của linh kiện ̶ tham khảo datasheet của nó) của một MOSFET quan trọng hơn các tụ điện của nó. Vì dòng điện cực cửa là không đổi (DC), nên có thể biểu thị điện tích cực cửa Qg dưới dạng tích thời gian với dòng điện cực cửa IG không đổi (điện tích cực cửa được tính là Qg = IG × t.).
Hình 1: Các tụ điện bên trong của một MOSFET công suất. Hình 2: Nạp điện tích cực cửa (tải thuần trở)
Mạch lái MOSFET công suất cơ bản
Hình 3 mô tả một mạch lái MOSFET cơ bản. Trong thực tiễn, điện dung của MOSFET được lái (nạp, xả) và các điều kiện sử dụng của nó phải được xem xét khi thiết kế mạch lái.
Hình 3: Mạch lái MOSFET cơ bản.
Lái Logic
MOSFET được điều khiển trực tiếp bằng mạch logic hoặc vi điều khiển trong nhiều ứng dụng. Lái bằng các chip vi xử lý hay vi điều khiển là một yêu cầu rất quan trọng.
Hình 4: Lái trực tiếp một MOSFET với một MCU.
Hình 4 biểu diễn ví dụ về một mạch điều khiển tắt và tắt rơ-le công suất. Vì thời gian bật mở và tắt có thể chậm khoảng vài giây đối với công tắc tải, nên cực cửa MOSFET có thể được lái với một dòng điện nhỏ.
Thí dụ 1: Vẽ một mạch công tắc điều khiển Relay dùng MOSFET. Tính các thông số của mạch. Biết relay sử dụng T92S7DT2-24 (OMRON) có tham số 24 VDC dòng qua cuộn dây 100 mA, dòng công tắc 25 A.
Giải
Sơ đồ nguyên lý của mạch:
Hình 5: Mạch điều khiển Relay dùng MOSFET.
Tính toán: Tất nhiên ta phải sử dụng nguồn cung cấp VDD là +24 VDC để cấp cho Relay. Vì dòng tải qua cuộn dây relay là 100 mA, đó chính là dòng yêu cầu cho ID của MOSFET. Chọn MOSFET công suất có tham số thỏa mãn yêu cầu dòng ID ≥ 100 mA và VDS ≥ 24 V. Ta chọn MOSFET 2N7000 có thông số cơ bản:
Ký hiệu | Thông số | Các điều kiện | Cực đại | Đơn vị |
VDS | Điện áp máng-nguồn | 60 | V | |
ID | Dòng cực máng | Giá trị DC | 280 | mA |
RDS(on) | Trở kháng-on máng-nguồn |
ID = 500 mA VGS = 10 V |
5 | Ω |
VGS(th) | Điện áp ngưỡng cửa-nguồn |
ID = 1 mA VGS = VDS |
3 | V |
Trở kháng của cuộn dây relay: Rcoil = VDC(relay)/Icoil = 24V/100mA = 240Ω
Trở kháng tổng của tải: RL = Rcoil + RDS(on) = 240 Ω + 5 Ω = 245Ω
Dòng cực máng của MOSFET với tải RL: ID = VDD/RL = 24V/245Ω = 97,96mA
Vth của 2N7000 là 3 V, dễ dàng lái van MOSFET bằng mạch logic. Trong hình 5 dùng một cổng AND của IC 74HC08 (CMOS). Chọn điện trở cực cửa 1 kΩ cho mạch lái vì relay có tần số chuyển mạch rất thấp! (Relay không thể đóng ngắt với tần số ≥ 100 Hz). Việc tính toán RG cho phù hợp phụ thuộc vào các điện dung ngõ vào MOSFET và ứng dụng chúng ta sẽ xem ở phần sau.
Chuyển đổi điện áp lái
Để điều khiển (lái) MOSFET từ mạch logic hay MCU không phải lúc nào cũng có thể nối trực tiếp được. Do các MOSFET công suất không phải lúc nào cũng có Vth nhỏ, mà thường có Vth ˃ 5 V (mức logic TTL). Vì thế nâng áp lái là một yêu cầu thực tế.
Chuyển đổi một điện áp lái đến 15 V
Hình 6 cho thấy một ví dụ về lái một MOSFET với logic số. Mạch này tăng (boost) điện áp lái khi MOSFET không thể lái được ở 5V. R2 mắc nối tiếp với điện trở cực cửa R3 làm tăng trở kháng của lái cực cửa, gây khó khăn cho việc lái MOSFET vào chế độ bão hòa. Điều này làm chậm tốc độ chuyển mạch của MOSFET và do đó làm tăng tổn hao do chuyển mạch. Ngược lại, giảm R2 làm cho dòng cực máng ID lớn chạy đến mạch lái trong thời gian MOSFET tắt, làm tăng công suất tiêu thụ của mạch lái.
Hình 6: Mạch chuyển đổi điện áp lái.
Mạch đẩy – kéo
Hạn chế của mạch biểu diễn trong hình 6 là việc tăng điện áp lái từ logic số sẽ làm tăng công suất tiêu thụ của mạch lái. Vấn đề này có thể được giải quyết bằng cách thêm một mạch đẩy kéo như hình 7.
Một mạch đẩy kéo cũng được sử dụng khi một dòng lái cho một MOSFET thì không đủ.
Hình 7: Mạch lái MOSFET dạng đẩy kéo.
Thí dụ 2: Trình bày hoạt động và thiết kế của mạch lái cực cửa MOSFET công suất trong hình 7.
Giải
Mạch lái kích bằng xung điện áp Vlái = 5 V có thể từ mạch logic, IC 555 hoặc từ MCU (xem thêm hình 6). Hoạt động như sau:
Xung kích dương cạnh lên sẽ lái cực cửa cho Q4 dẫn, có dòng ID chạy qua R1. Tuy nhiên RD(on) của Q4 rất bé nên có thể xem cực máng của Q4 là một xung dương +15V(VDD) ngược pha xung kích (Q4 mắc kiểu CS). Xung này qua mạch đẩy kéo dùng cặp đôi bổ phụ BJT Q2 và Q3 mắc kiểu lặp cực phát (CC) không đảo pha xung vào. Nhiệm vụ của Q2 là nạp cho tụ điện ngõ vào của MOSFET công suất Q1 trong thời kỳ bật dẫn. Q2 sẽ kích cho Q1 dẫn ở cạnh lên của xung. Ngược lại Q3 sẽ kích cho Q1 trong thời kỳ bật tắt, nói cách khác nó xả cho tụ cực cửa Q1, nó tác động ở cạnh xuống xung kích. Các thành phần thụ động được tính:
R2 = (Vlái – VG(Q4))/I4 với I4 = điện tích cực cửa của Q4 / thời gian toff của Q4.
R1 + RD(on)Q4 = 15 V/ IDQ4. Chọn MOSFET Q4 ta có thông số RD(on), ID, toff, VG ta có thể tính được R2, R1 dễ dàng.
R3 được tính = (VD(Q4) – VB(Q2))/IB(Q2).
Theo sơ đồ mạch VE(Q2) ≈ VDD – VBE = 15 V – 0,6 V = 14,4 V. Chọn BJT ta biết IB (IB = IC/β với IC = IG(Q1)).
R4 = (VEQ2 – VG(Q1))/IG(Q1) = (14,4V – VG(Q1))/IG(Q1). Chọn Q1 ta sẽ có các tham số VG, Qg, t(on), t(off) ta sẽ tính được IG(Q1) và R4.
Thông thường, các bộ nguồn xung sử dụng một IC điều chế độ rộng xung (PWM IC) với transistor NPN ở tầng ngõ ra. Transistor ngõ ra này dẫn khi MOSFET cũng phải dẫn, do đó không thể sử dụng loại lái sử dụng với các linh kiện TTL cực thu hở. Hình 8 và 9 cho các thí dụ về các mạch lái tiêu biểu được sử dụng với các IC điều chế độ rộng xung.
Lái sử dụng biến áp xung (chuyển mạch cách ly)
Việc sử dụng biến áp xung giúp loại bỏ nhu cầu cấp nguồn nuôi mạch lái riêng. Tuy nhiên, nó có một nhược điểm là công suất tiêu thụ của mạch lái. Một biến áp xung đôi khi được sử dụng để cách ly MOSFET khỏi bộ lái của nó nhằm bảo vệ mạch lái khỏi sự cố của MOSFET.
Hình 10 biểu diễn một ví dụ về một mạch đơn giản. Mục đích của diode zener trong mạch này là nhanh chóng reset biến áp xung. Mạch hình 11 có thêm một transistor PNP để cải thiện hiệu suất chuyển mạch.
Hình 10: Mạch biến áp lái cực cửa. Hình 11: Cải thiện hoạt động chuyển mạch.
Mạch điện trong hình 12 có một tụ điện mắc nối tiếp với một biến áp xung để cấp phân cực ngược cho MOSFET trong thời gian tắt của nó và do đó cải thiện tốc độ chuyển mạch. Vì tụ điện chặn phân cực DC nên nó cũng ngăn biến áp xung đạt đến điểm bão hòa.
Hình 12: Mạch cải thiện tốc độ chuyển mạch MOSFET.
Sử dụng bộ ghép quang và bộ nguồn nổi (floating)
Một linh kiện cách ly quang (opto-coupler) cũng được sử dụng cho lái cực cửa MOSFET. Nguồn điện riêng là cần thiết cho đầu ra của bộ ghép quang. Để sử dụng bộ ghép quang để lái nhánh cao của nửa hoặc toàn bộ cầu, cần có nguồn cung cấp nổi (floating). Cần chú ý đến tốc độ và khả năng lái của bộ ghép quang.
Hình 13: Mạch ghép quang lái cực cửa.
Chọn mạch lái MOSFET công suất
Bất kỳ mạch nào được trình bày trên đều có thể bật dẫn và bật tắt MOSFET công suất. Loại mạch thì phụ thuộc vào ứng dụng. Các khả năng hút dòng vào và cấp dòng ra của mạch lái sẽ xác định thời gian chuyển mạch và tổn thất chuyển mạch của linh kiện công suất. Như một quy luật, dòng cực cửa càng cao khi bật dẫn và bật tắt, thì tổn hao chuyển mạch sẽ càng thấp. Tuy nhiên, các mạch lái tần số chuyển mạch cao có thể tạo ra dao động trong các mạch cực cửa và mạch cực máng. Lúc bật dẫn, dao động ở mạch cực cửa có thể tạo ra điện áp quá độ vượt quá định mức VGS cực đại, sẽ làm thủng oxit cực cửa và phá hủy nó. Để ngăn chặn sự xuất hiện này, một diode zener có giá trị thích hợp có thể được thêm vào mạch như trong hình 14. Lưu ý rằng zener phải được gắn càng gần với linh kiện MOSFET càng tốt.
Khi bật tắt, điện áp cực cửa có thể dao dộng trở lại đến điện áp ngưỡng và bật dẫn linh kiện trong thời gian ngắn. Cũng có khả năng là điện áp máng-nguồn sẽ vượt quá điện áp danh định lớn nhất do dao động trong mạch cực máng. Một mạch snubber RC bảo vệ hoặc diode zener có thể được thêm vào để hạn chế điện áp cực máng đến một mức an toàn.
Hình 14: Mạch tránh quá áp nguồn cửa.
Kết luận
Việc lái cực cửa MOSFET là một việc rất quan trọng trong các ứng dụng chuyển mạch dùng MOSFET công suất. Phần bài trình bày trên chỉ mới đề cập đến một số cách lái cực cửa MOSFET đơn giản chủ yếu là lái đơn không đối xứng, cho các ứng dụng tải nối xuống đất khi chuyển mạch. Hay nói cách khác là lái phía thấp (low side), những phần còn lại xin hẹn lại phần sau.